$$y = a(x-h)^{9} + K$$

$$(h, K)$$

4.1 Review! $y = a(x-h)^2 + K$ (h, K)

Which is the graph of the function $f(x) = -2(x+3)^2 + 5$? (-3,5)

- 2. Which of the following best describes how to transform $y = x^2$ to the graph of $y = 4(x - 2.5)^2 - 3?$ (2.5,-3)
 - Translate 2.5 units left, stretch by a factor of 4, translate 3 units down.
 - (B) Translate 3 units right and 2.5 units down, stretch by a factor of 4.
 - Translate 2.5 units right, stretch by a factor of 4, translate 3 units down.
 - Stretch by a factor of 4, translate 2.5 units left and 3 units down.

4.2 Review!

3. What is the vertex of the parabola $y = x^2 + 8x + 5$?

$$\bigcirc$$
 (4, -11) \bigcirc (-4, 5)

$$X = \frac{-b}{2a} = \frac{-(8)}{2(1)} = \frac{-8}{2} = -4$$
 $y = (-4)^{2} + 8(-4) + 5$

$$y = (-4)^{3} + 8(-4) + 5$$

4. What is the vertex form of the function $y = 3x^2 - 12x + 17$?

$$y = 3(x-2)^2 + 5$$

$$y = 3(x-2)^2 + 11$$

$$y = 3(x-2)^2 + 17$$

$$y = 3(x+2)^2 + 5$$

$$X = \frac{b}{2a} = \frac{-(-1a)}{2(3)} = \frac{12}{6} = 2$$

$$Y = 3(2)^{3} - 12(2) + 17$$

$$Y = 5^{4}$$

$$(2,5)$$

$$Y = 3(x-4)^{3} + 12$$

$$Y = 3(x-2)^{3} + 5$$

4.3 Review!

A baseball coach records the height at every second of a ball thrown in the air. Some of the data appears in the table below.

	$\overline{}$	$\overline{}$	$\overline{}$	`
Time (s)	0	1	3	Ī
Height (ft)	0	64	96	1
				7

Which equation is a quadratic model for the data?

$$h = -16t^2 + 80t$$

$$h = -32t^2 + 80t$$

(B)
$$h = -48t^2 + 112t$$

$$h = -16t^2 + 64t$$

- A baseball is hit so that its height above ground is given by the equation $h = -16t^2 + 96t + 4$ where h is the height in feet and t is the time in seconds after it is hit. Show your work. **a.** How long does it take the baseball to reach its highest point? $\frac{1}{2} = \frac{96}{32} = \frac{96}{33} = \frac{3}{35} = \frac{3}{35}$

b. How high will it go?

$$h = -16(3)^2 + 96(3) + 1$$
 $h = 148$