10.2 Parabolas

Learning Targets for today

- To be able to graph parabolas with equation y = ax².
- To be able to graph parabolas with equation x = ay².
 To be able to work with the vertex, focus and directrix of a parabola.
- To be able to transform a parabola.
- To be able to use parabola equations to solve problems.

Vocabulary

Parabolas – the set of all points in a plane that are the same distance from a <u>fixed line</u> and

a fixed point NOT on the line.

Focus of a Parabola - the fixed point!

Directrix - the fixed line!

$$y = ax^{2} + bx + c$$

Vertical Parabola $= v = ax^2$ (with vertex (0,0))

The coefficient $\mathbf{a} = \frac{1}{4c}$ determines the focus (0,c) and the directrix $\mathbf{y} = -\mathbf{c}$.

1-4c

a= xc

U=ax2+bx+c

Parabolas with equations $y = ax^2$

Example for you...

1. What is the equation of the parabola with

the vertex (0,0) and focus (0,-1.5)?
$$C = 1.5$$

find $a \rightarrow a = \frac{1}{4c} = \frac{1}{4(1.5)} = \frac{1}{-6}$

$$A = -\frac{1}{6}x_3$$

2. What is the focus and directrix of the parabola with the equation $y = 2x^2$. $\alpha = 2$

Your turn to try...

 What is the equation of the parabola with

$$da \rightarrow a = \frac{1}{4c} = \frac{1}{4c3} = \frac{1}{12}$$

What is the focus and directrix of the parabola with the equation $y = -4x^2$. $\alpha = -4$

Parabolas with equations $x = ay^2$

Example for you...

1. What is the equation of the parabola with the vertex (0,0) and directrix x = -4%

finda
$$\rightarrow a = \frac{1}{4(c)} = \frac{1}{4(4)} = \frac{1}{10}$$

2. What is the focus and directrix of the parabola with the equation $x = 6y^2$. $(x = 6y^2)$

find
$$c \rightarrow \alpha = \frac{1}{4c}$$

Your turn to try...

1. What is the equation of the parabola with the vertex (0,0) and directrix $x = \frac{5}{2}$?

finda =
$$a = \frac{1}{4(-2.5)} = \frac{1}{-10}$$

2. What is the focus and directrix of the parabola with the equation $x = -2y^2$.