10.3 Circles

Learning Targets for today

- To be able to write an equation of a circle.
- To be able to use translations to write equation of circle.
- To be able to graph a translated circle.
- To be able to use graph to write the equation of a circle.

Key Concepts to Know

Standard Form of a Circle - The standard form of an equation of a circle is

$$(x-h)^2 + (y-k)^2 = r^2$$

(h, k) x

Where (h, k) is the center of the circle and r is the radius.

Writing an Equation of a Circle.

Example for you...

Write the standard equation of each circle.

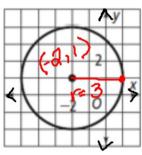
(h, K) (X-h) + (y-t)

1. Center (4,2); r = 9

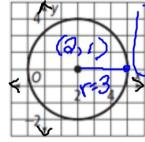
2. Center (0,0); r = 4 $(x-0)^{3} + (y-0)^{3} = 4^{3}$

Your turn to try...

Write the standard equation of each circle.

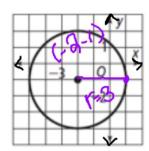

1. Center (8,-6);
$$r = 1\sqrt{(x-8)^2+(y+4)^2}=1$$

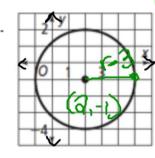
2. Center (5,0);
$$r = 7(x-5)^2 + y^2 = 49$$


Writing an Equation of a Circle.

Example for you...

Write the standard equation of each circle.
(32)


(X+2)2+(y-1)2=9


32 (X-2)2+(y-1)2=9

Your turn to try ...

Write the standard equation of each circle.

(x+2)2+(y+1)2=9

 $(x-2)^{2}+(y+1)^{2}=9$

Writing an Equation of a Circle Given a Point on the Circle.

Example for you...

Write the standard equation of each circle given the radius and a point on the circle.

Hint:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y)^2}$$

$$\sqrt{=\sqrt{(3-3)^{9}+(-19)^{9}}}$$

Your turn to try...

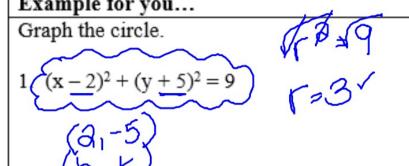
Write the standard equation of each circle given the radius and a point on the circle.

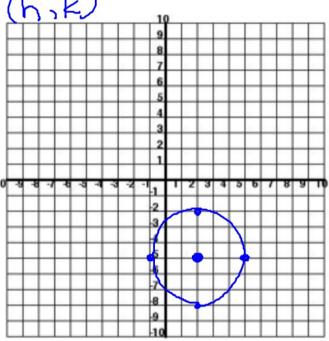
$$0 = \sqrt{(-1-4)^2 + (1-3)^2}$$

$$d = \sqrt{(-3)^{9} + (-40)^{9}}$$

$$d = \sqrt{9 + 310}$$

$$d = \sqrt{45} = \sqrt{(x-5)^{9} + (y-9)^{2} = x45}$$

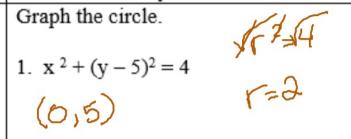

$$(x-4)^{9} + (y-3)^{2} = \sqrt{9}$$

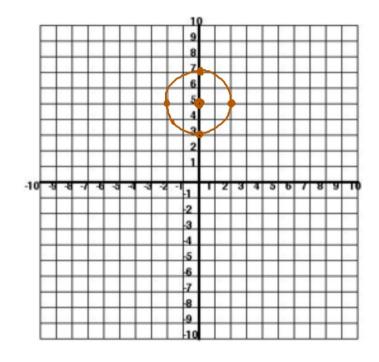

$$(x-4)^{9} + (y-3)^{2} = \sqrt{9}$$

Graphing a Circle.

Example for you...

Graph the circle.





Your turn to try...

Graph the circle.

1.
$$x^2 + (y-5)^2 = 4$$

